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Distribution of eigenvalues of certain matrix ensembles
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We investigate spectral properties of ensemblebl®fN random matriced defined by their probability
distribution P(M)=exd — Tr V(M)] with a weekly confinement potentidf(M) for which the moment
problem = [x"exd —V(x)]dx is indeterminated. The characteristic property of these ensembles is that the
mean density of eigenvalues tends with increasing matrix dimension to be a continuous function contrary to the
usual strong confinement cases, where it grows indefinitely viher. We demonstrate that the standard
asymptotic formulas for correlation functions are not applicable for weakly confinement ensembles and their
asymptotic distribution of eigenvalues can deviate from the classical ones. The mod®l(wjithIn%(|x|)/3 is
considered in detail. It is shown that wh@- the unfolded eigenvalue distribution tends to a limit which
is different from any standard random matrix ensembles, but which is the same for all three symmetry classes:
unitary, orthogonal, and symplectiS1063-651X97)10206-9

PACS numbegps): 05.45:+b, 05.40+j

[. INTRODUCTION related to the eigenvectors one can obtain the well-knj@n
joint probability distribution of the eigenvalues

Random matrix ensembles are widely used for the de- N
scription of statistical properties of energy levels of complex
guantum systems. Although initially they were supposed (X1 X2, - - 'XN):CNGX% _;1 V(xi)
be applied only to many-body systems with complicated in-
teractions, such as heavy nuclsee, e.g.[1]), it was later whereC, is a normalization constant andis a symmetry
[2,3] conjectured that they could even be used for low-parameter equal to 1, 2, or 4 for GOE, GUE, and GSE,
dimensional quantum models, with the requirement that theespectively.
classical motion of such systems should have strong chaotic In the simplest case of the unitary ensembie=@) all
properties. The important feature of this conjecture consista-point correlation functions can be written in terms of a
in supposing that, after a proper rescaling of the eigenvaluesjngle function[4]
the statistical properties of the spectrum of a generic chaotic
quantum system should be close to one of the three classical Rn(X1, - .. Xp)=detKy(Xi,X)))i j=12,...n» ©)
random matrix ensembles: the unitd GUE), the orthogonal
(GOB), or the symplecti¢GSE depending only on the sym-
metry of the mode[1-5]. (For generic classically integrable N-1

. 1 1

models one expects that energy levels are independent a'%k(x,y):ex;{ —ZV(X)— =V(Y)| D Pa(X)P.(Y), (4)
their spacing distribution is close to the Poisson distribution 2 2 n=0
[6].) : .

The strong argument in favor of this conjecture is the fac@"dPn(X), n=1,2,..., arepolynomials orthogonal with re-
that many different random matrix ensembles, at the scale ciP€Ct to the measure expV(x)), i.e.,
the mean level separation, give the same level spacing dis-
tribution [4]. f exp(— V(X))Pr(X)Pn(X)dX= 8y (5)

Considering only the case of ensembles invariant under
all possible rotations of the eigenvectdiompatible with

il;[j Ixi—x;|%,  (2)

where

) e - e The correlation functions for the orthogonal and the sym-
the imposed symmetyy the joint probability distribution  hj0qtic ensembles can be expressed in terms of the so-called
P(M) of the matrix elements of Bl X N matrix M is defined skew-orthogonal polynomiafst,7].
[4] by choosing in By the Christoffel-Darboux formulg8] the kernel(4) can
be rewritten as
P(M)=C exd— Tr (V(M))] (1)

a

1 1 an_1
KN(X,Y):eXF{ - EV(X)_ EV(Y) y

the functionV(x). Integrating Eq.(1) over the parameters

% PN(X)PNl(y))(:;N(y)PNl(X) . ®)
*Permanent address: Instituto désiEa, Universidade de ®a
Paulo, Caixa Postal 20516, 01498Raulo, Sa Paulo, Brazil. where a, is the coefficient of the termx" in P,(x)
TUnite de Recherches des Universitearis X et Paris VI, Asso- [P,(X)=a,x"+ ---]. Further progress in the explicit com-
ciee au CNRS. putation of then-point correlation function, in the natural
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limit N—, depends on the knowledge of the asymptotic . b__
behavior of the polynomial$,(x), whenn—c. In prin- HPN(X)]ZJ pN(X)V(X)dx
ciple, Ky(x,y) and all the other correlation functions, in par- 2

ticular, the average level densipy(x) of eigenvalues v (b [b— _
_EJ f pnOO)IN[x=X"| pp(x")dx dX,
aJa

_ . an-1
PN = Kn(X,x) = exp(— V(X)) — (13
X[PL(X)Pn_1(X) = Pu(X) Pl 1(X)] (7)  with the normalization condition
b
depend on the potential and dh The universal behavior is f pn(X)dx=N. (14
a

only expected in the limiN—« and after unfoldind1-5],

i.e., after rescaling the eigenvalues by choosing a new vari- o ] i
able £= ¢(x) from the relation The extremal functiorp (x) in Eq. (13) is defined by con-

dition 6F/ 6p=0 that yields
dé 8 b__
ax PN ® V(x)zyf pu(DInjx—t|dt+C, (15)
a

In terms of these variables thepoint correlation functions oy py gifferentiation,
are still given by Eq(3), but with Ky(x,y) replaced by the

ki I Py
erne bel;NT(?dt:%V'(x), (16)
_ Kn[X(€1),X(€2)] :
Kn(€1,€2)= \/pNEIX(fl)l]pN[xz(gz)] : ©  where the symbol P denotes the Cauchy principal value. The

general solution of this singular integral equatiéoften
It is evident that these new variables will have, by con- called in this context the Dyson equatjois well known,

struction, an average level density equal to one, from whict{S€€ €:9-[12,13) and can be written in many different
follows the name of this procedure—unfolding the spectrumiorms. For S|m_pI|C|ty we assume thei(x) is an even convex
The hypothesis of universal behavior of the matrix en-function anda=—R, b=R. In this case,

sembles assumes that in these unfolded variables and in the

L. X N - N 1 R dt ( R2_t2 1/2
limit N—c the above kernel tends to the universal function *, (x)= T 'nf V' (1)
N r R ymt ) rt=x R !
— sifm(§1—§2)] (17)
Ko(é1,62)= THE—E) (10) _ _
1T 62 where the value oR has to be determined from the equation
independent oV (x). (The corresponding limiting functions 1 (R R 2 ,
for GOE and GSE are given i#,5].) e _Rdt =t VO=N (18
II. ASYMPTOTICS OF ORTHOGONAL POLYNOMIALS Integrating overx one obtains the useful relation
For many potentials this conjecture has been already veri{f*— = N X 1 (R ,
fied (see, e.g[4,9). In fact, there exists a simple WKB-type | Pn(X)dX'=Zarcsin g j+-75 | dt V(D)
ansatz for the asymptotics of orthogonal polynomials of an
“arbitrary” V(x) [10] that, as is shown in Ref14], leads to R2—tx+ J(R?—t?)(R?>—x?)
the scaling limit(10). However, it can be proven only for XIn ra— . (19

special classes of potentials.
The main ingredient of this asymptotics is the calculationlf, for example, V(x) =ky|x|*, wherek is constant, then

of the mean eigenvalue densipy,(x) as the function which  [9,11],
gives an extremum of the total measy# of the ensemble

of NXN matrices. Consider Ed2) written as Pn(X)= Rﬁf(%) (20)
N N
P(X1,X5, ... Xn)=C exd — F(X1,X2, - .. Xn) 1, (11 with
where (1 721
f(x)=— dr (21

N s |X| T2_X2
Y
F(X1, X,y « v ,xN)=E V(xi)—EZ In|x;—x;[. (12
i=1 i#] and

1/

Assumingpy(X) to be a smooth function of nonzero only _ ( NV7 T(al2) 22
N

in the intervala<x<b, one has |\ 2k T'(at+1/2)
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For the Gaussian potentisfi(x) = yx2/2 For certain purposes it is more convenient to have a slightly
different asymptotics when thdth polynomial is expressed
_(x)= im 23) in terms of quantities connected with thith polynomial. If
PN T : M andN are large andM —N<M

which is the famous Wigner semicircle Igw].

Knowing ﬂ(x) the asymptotics of théth orthogonal p (X)H(E)
polynomial wherN—« can be written as followssee, e.g., M
[10,11] and[14]):

V2exp(z V(X))

2\ Y2exp(3 V(X)) M %i)
PN(X)H(;) (—RiT)mCOibe(x)], (24) X cog Pn()+(M=N)arccog - |- (26)
N
where A simple physical explanation of this ansatz can be found in

o 1 « [14]. Assuming its validity and taking into account that
N T e
Do(X)= J x ) dx’ + —arcco%—) —~ (25 an_1/ay—Rp/2 asN— o, it is easy to compute the kernel
N(X) = . pn(X") 2 Ry 4 (25 (6) (see[14))
|

cog @n(x)]cod Pn(y) — ¢(y)]—cod P(y)]cogd P(x) — ¢(X)]

§ m(x=y)\[si g Isin ¢(y)]]
|
where ¢ is defined from the relationx=Rycosp(X), °°
y=Rycosp(y). Now, assuming/Ry~1 andy/Ry~1, but V(x)=n§0 In[1+2q" cosh2x)+q>"*2], (30

their differencelx—y|<Ry, one has

. where x=sinh(y) and the parametegq=exp(—3), with
K (X,y) = siné(x) — &(y)] (289 B>0. The main reason to choose this particular form was
’ m(X—Y) ' the fact that the asymptotics of the corresponding orthogonal
polynomials, the so-called-Hermite polynomials, can be
wheredé&/dx= py(X) has the meanin@up to the shift of the calculated explicitly{16]. In Ref.[15] it was then obtained
mean staircase function. After unfolding, one obtains that in the limitN— the kernel(6) tends to

K27}~ sin(é—7) 29 K_<§,n)=cwm<ﬁ§,ﬂm®4<f,n:p)—sfgﬁ[”;fg_”;;fz)],
N X (&) = X() Np ((D)p(X(7)

0,(m(E+ 71);p)

and x(£) as above is the inverse function ¢fx). If we 04(&,7,p)=

suppose that the mean density does not change much on the V04(2mE;p) 64(277;p)
scaleAé~1, we can conclude that this expression coincides
with Eq. (10). (These considerations are valid far from sin- ),y veoshu)coshiv) c(p)= B
gular points ofp(x). For interesting phenomena near such ’ utv| 2m6;(0;p)’
points sed18].) cosk( 2

We emphasize that Eq$24)—(26) are only a resonable (31)

conjecture for asymptotics of orthogonal polynomials but
they are not yet proved in a full generality for “arbitrary” wheref,(x,p) and 8,(x,p) are Jacobi'® functions defined
potential V(M). as in ([20], p. 921 6/(x,p)=4d6;(x,p)/ox, and p
=exp(— 2% B).
Certainly, Eq.(31) is far from the standard expectation
(10). In particular, wherp<1, i.e., 3<2m? and é~ 7 this
The discussion above leaves the impression that the pdernel can be approximated by the simple expression
tential V(x) plays a secondary role and that in the limit of _
large N, after unfolding, the statistical properties of any en- e _ B sia(é—7)]
semble will follow universal functions. That this is not the plém= 2@ sini B(é—n)/2]’
whole story has been shown in REE5]. In this paper, it was
considered the case of a unitary ensembte,2, with a po-  from which it follows that it tends to the GUE lim{tL0) only
tential when 8—0. This approximate expression was usedlif]

IIl. COUNTEREXAMPLE OF STANDARD ASYMPTOTICS

(32
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to compute the nearest-neighbor spacing distribution and it

was concluded that with increasigyit tends to the Poisson j exp(—V(x)f(x)x"dx=0, forall n. (38
distribution typical of an uncorrelated sequence of eigenval-

ues. Roughly speaking one can say that slowly growing potentials

The purpose of this paper is twofold. First, we clarify why lead to indeterminate problems. Thus, for example, the po-
the ensemble of Refl15] gives a result different from the tential V(x)=k|x|* gives a determined moment problem
standard one, Eq10). We will also show that the potential only whena=1 for the interval (,+%) and only when
(30) belongs to a large class of potentials for which the usuak=1/2 for an interval (0+ ). That otherwise we have an
asymptotic estimates are, strictly speaking, incorrect. Sedndeterminate problem follows from the two easily proved
ond, we shall directly compute the level spacing distributionidentities:
of the eigenvalues in the limiB—o for this and similar

ensembles, showing that after unfolding they tend to a lim-|~ o o ay
iting distribution independent g8, which is neither the Pois- J_mexr(—k|x| )C0< k| tan7 xidx
son nor the GUE distribution.
=0 forall n, if a<1, (39

IV. DETERMINATE AND INDERTIMINATE AND
MOMENT PROBLEMS

and

Before proceeding, we need a few facts from the theory of fxexp(— k|x|*)sin(k|x|“tanra)x"dx=0 forall n,
orthogonal polynomial$17] which are well known but ap- 0

parently never used in the present context. Let us define the ) L

momentsu,, of the distribution exp—V(x)) if a<z. (40

In the same way, the identity
,un=f exp(—V(x))x"dx, n=12, ... (33

Jxex% - EInzx)sin<2—7TInx)xr‘dx=0 forall n (41)
0 B B

shows that the moment problems of the potential
0\/(x) = (1/B)In?x is always indeterminate.

The importance of the above-introduced notions of deter-
mined and indeterminate moment problems lies in the fact
that these two types of models differ by the behavior of their
mean densityy(x) of eigenvalues of corresponding random

always lead to a determined moment problessuming that matrix ensemble in the limiN—c ([17], p. 50. In fact, a
y P Y necessary and sufficient condition for the moment problem

_V(x) ha_s no smgul_a_ntlds For the |nf|n|te_|nterval there ex- to be determined is that 4 oo
ists a simple condition that states that in order for the mo-

where for simplicity we have omitted the limits of integra-
tion. Given the functionv(x) all the w, are uniquely de-
fined. The important question is to know if the inverse is als
true, i.e., if given all theu,, is it possible to find the unique
function V(x)? If the answer to this question is positive we
say that the “moment problem” is determined, otherwise we
call it indeterminate.

It is a well-known result that finite limits of integration

ment problem pn(X)— . (42)
°° If the moment problem is indeterminate, then
Un= exp(—V(x))"dx, n=12, ... (34
- PN(X) <o (43
to be determined, it is sufficient that asN—c and the density tends to a continuous function of
X.

o

E —(1on) It is evident that, for indeterminate problems, the
“ Man =% (39 asymptotic behavior of the corresponding orthogonal poly-
nomials cannot be described by the previously discussed
On the other hand, for the moment problem on the semimMethod, simply because formulas frof0,11 define the
infinite interval level density and other quantities as unique function of
V(x). But for indeterminate problems there are infinitely
o many different measures giving exactly the same orthogonal
Mn= fo exp(—V(x)x"dx, n=12,... (36 polynomials and there is no way to choose the “correct”
one.

The difference between ensembles whose potentials give
rise to a determined or indeterminate moment problem can
P be understood from their limits ad—o. After unfolding,

E M;(mn):oo_ (37) the un_iversal behavior is expected in the scale€ of order
n=1 1, but if py— o asN— o the corresponding values of the old
variablesx tend to zero. Therefore, one is forced to consider
If the moment problem is indeterminate then there is funcvery small values ofx and the existence of universal
tion f(x) orthogonal to allx", such that asymptotic formulas seems natural. On the contrary, for in-

to be determined, it is sufficient that
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determinate problems even after unfolding, the correspondind (note thatm [5pn(y)dy equals the argument of the nul

ing values ofx are of order 1 and there is no reason why thefunction (39) which is orthogonal to all powers of) that
limit should be universal. whenN— oo
One can conjecture that the asymptotic formula of the

behavior of the orthogonal polynomials given[it0,14] can — A a1 T
be applied only for determinate problems. Asymptotic prop- p(X)kaM tanh?. (47)
erties of indeterminate problems can be completely different _ _ _
from standard expectations. Another important example is a potential of the form
The asymptotic behavior of the potenti@0) is the fol- 1
lowing: V(x)= Elnzlxl, (48)
V(X)H EInZX. (44) that whenN— oo gives

B Ng

. ] Ry—2 ex;{ —) (49
Therefore, the problem considered in Rlf5] corresponds 2
to an indeterminate moment problem and the difference beénd
tween EQ.(32) and the expected value E@LO) is not so
surprising. _ 2

p(X)— BN (50)

V. BEHAVIOR OF SMOOTH QUANTITIES IN . .
INDETERMINATE MODELS We stress that Eq$47) and(50) are approximating formulas

giving only the smooth part of the mean level density. The
Nevertheless, the smooth quantities even for indetermiexact mean level density has oscillations which are washed
nate problems can be described by the usual formulas. Faut by the above metho@gee below.
example, let us define the smooth mean level density by Assume, for the moment, that the expresgi29) is valid
for indeterminate systems apdx) is the limiting mean den-
_ 1 (xo+(L/2)Ax sity. In most cases one is interested in the investigation of the
p(X)= 3% p(x)dx. (45  statistical properties of a large number of eigenvalues. As
Xo— (1/2)Ax . . - . . .
p(X) is an integrable function, in order to obtain many ei-
genvalues one is forced to consider large valuexpf)(and

If the interval Ax includes many eigenvalues bik<Ry it (¢ ). Now, the important region in the kernels is the fol-
is still possible in some cases to prove Erf), but the local  |owing:

mean density of states will be different from this value. Be-
low we shall present the explicit calculation for a certain X,y>1, Aé=¢—n~1 (52)
model that clearly illustrates this point. In some sense, it is

possible to say that for indeterminate problems there is n@nd
separation between macro and micro scales. SiN(A &)
We stress that for determined problemg—«, when K(¢ )= .
N— oo assuming that the potenti&l(x) does not depend on T(X(E) = X(E—AEWp(X(£))p(X(£—A§))
N. Sometimes one considers tihedependent potential in (52

such a way that the mean density of states tends to thﬁ: X(€) —x(£—A&)— Aédx/dé=0(A£)<1 one can ne
) - , . —X(&— - = < glect
N-independent limit. By analogy with the Gaussian case On‘?he(hi)g;;heg-order)terms, giving as result the limiting form

oﬁe_n defipes the measure as ex;N\{(x)) (see, _e.g.[14]). (10). This condition is equivalent to
If it is not just rescaling of variables, it can drastically change
the asymptotic behavior of all quantities, as it corresponds to d®x  dx

a particular limit when certain coupling constants tend to d_g2<d_§ when §— . (53
infinity with increasingN.

A rough description of indeterminate problems can be obFor example, for the model46), p(x)~x% 1, hence
tained using the above-mentioned asymptotic formulasx(¢)~ &Y and the above condition is fulfilled §<1. This
though locally they cannot be applied. The main feature oimeans that, for this model, it is possible to observe a notice-
indeterminate systems is that their mean density tends, wheable deviation from the standard res(di0) only at small

N—oo, to a certain function independent Nf values of¢. But as there is only a small fraction of eigenval-
Let us consider the example of the potential ues in this region, the asymptotics in the bulk of the spectra
tends to the usual onéThere is an interesting limit when
V(x)=2k]|x|. (46) a—0 asN—o, but we shall not consider it heje.

From the above condition we can infer that in order to
have a nonstandard behavior it is necessary that the second
derivative ofx(¢) is of the same order as the first one, which
is true if, for example,

From Eq.(39) it follows that it leads to an indeterminate
problem when & «<1. In fact, to find the behavior of
p(x) at a fixedx, it is necessary to compute the functi@1)

asx—0. Whena>1, f(0) is infinite, but if 0<a<1, we X~exp BE), (54)
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or, in other words, ifp(x)~1/8x. But this is exactly the P(¢,, ... &)

case, as we have already seen, of the square logarithmic po-

tential and, consequently, of the potential which has been N N

discussed in Ref15]. Indeed, if we substitute E¢54) into =CNEXI{ —YB2, E+BY |&I(n—1)y+ 1)},
Eq. (29), we obtain the approximate expressi@?). n=1 n=1

These simple considerations clearly show why models (60)
with the potential growing as fx) are different from the ¢
other ones. It is for these models that the statistical properties
of eigenvalues deviate from the standard ones, not only near ﬁ 1
special points, but in the bulk of the spectra. P(é1,....60)=

pecialp P R PN
VI. LARGE B LIMIT OF THE In ?|x|/8 MODEL 1 n—1 1\2
It is natural to ask whether E¢32) is valid for all values Xexp -5 2 |&nl = 2 2y/ |

of B. Note that it was obtained only wheg< 272, In [15] it
was noticed that with increasing the distribution of eigen- (61)

values tends to the Poisson distribution, but the analysis WaSHere o= 1\27B. As f—o each|&,| is distributed as the
H = . — n
baflsg 2{:;:;;?0%5%)(;?% retﬁiesrrgélzz of model. wh o Gaussian random variable centeredat-(L+ 1/y)/2 with a
yP , Whesh-oc, half-width that goes to zero wheg— . It means that con-

the kernel(6) tends(after unfolding to a limiting function o . ) . ;
which is different from any standard ensemble, but which iSdltlon (59) is fulfilled and the calculations become simple. In

the same for all three symmetry types: unitary Orthogonalparticular, t_he mean level density, e_zqualed to the integral
and symplectic ’ ' bver all variables but one, can be written as

We start considering the potenti@or convenience we N-1

have introduced the symmetry paramejein the potential p(&)== 2 iexp{ — i2(|§|_§(n>)2 , (62
[see Eq(2)]) 2i=0 o\27 20
Y, where &M= (n+1/y)/2.
V(x)= E'” x|, (55 In the limit B— o this density tends to a sum @&ffunc-
tions
for which the probability distributiorf2) is N1
p(&)=75 2 8 —¢m). (63

N
Y
P(X1,Xz, ... Xn)=CpnEX _EZ In2|xi|)H I —xj]”.
i=1 i>]

(56) Therefore, in this limit, the eigenvalues are located on a crys-

tal lattice structure whose sites are separated by a distance of
The expression of the smoothed level density suggests tHehe half.

convenience of introducing the new variablesonnectedto ~1he difference between the exact mean density and its
thex; by usyal approximation obtained by the so_lutlon (_)f the saddle
point equation(16) is clearly seen. Equatiofi6) gives only
x;=2 sink(B&), (570  the smoothed part of(£), but is unable to reproduce the
prominent oscillations of Eq$62) and (63).
whose probability distribution can be written as follows: The next logical step is unfolding the spectrum with the

N correct density of states given by E®&2). Thus, we intro-
, 0% e duce the new variable
P(¢1, - én)=Ciexp| — 5.2 In?[2 sinhBé|
= dy
d—§=p(§), (64)
X H |2 sinhB& — 2 sinhBé;|”
) where, asB—=, p(£) can be represented as the piecewise

N continuous function
x[] 2 costBé;, (58)
N (%) - F{ = €] 1( 1+ ))T
p(&)=3 expg — —=ln=14+—]| |,
where the last term comes from the proddey, . . . dxy. 2 g\27 207\ 2 Y
When B— with & fixed, x;—o and in the difference _
|x; — ;| the term with the largest modul{ig| will dominate. it |éel, (65)
Let
and the boundaries of the intervdls (n=1,2,...,N) are
|&]<|&|< -+ - <| &N (590  chosen in between two peaks
Then in the limit of largeB the probaibility distribution tends I D S I P (66)
to the simple function 2 vy, 4 "2 v/ 4
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(The first and the last intervals being slightly different:
0<1,<3i+1/2y and N—1+1/y]—i<ly<w=.) Choosing
7(0)=0, one concludes that in the limg—o, when ||
el,, |7l €d,, where new intervalg, are

n—1 3 n 5
T< n<§. (67)

To find the probability distribution in the coordinates, it
is necessary to multiply Ed61) by HTp’l(gi) -n/2 -(n-1)12 n-1y2 n2 X

N
_ FIG. 1. The individual probability distributiomp,(x) for the
P71, .. .,on)=P(E(m), - .. fN(’?N))E[ p 1[§i(7li)]- model (75) in the limit 8— . !

(68)

( 1 2
. . . . . dnm(X)= 5| 2X—m—n+2——|(m—n),

As 7(§) is a monotonic function, the sequence of inequali- ’ 2 Y

ties (59) transform to 1 .

{ ®nm(Xmin) =5 (M=n)(m=—n—1) if m>n

| 71| <|ma] <- -~ <| 7l (69

Dn m(Xmax) = %(n—m)(n—m— 1) if m<n.
\

Therefore, with this ordering of variables, the probability (74

distribution is given by Eq(68). But the ordering69) does ) o

not give any information about the distribution of thg ~ AS m.n are integersm>n (m<n) implies thatm=n+1

inside the intervalsl,. The only restriction are the above (M=<n-—1) and¢y,,(x)>0 forxely,andn#m. (m=1 and
inequalities. m=N do not give additional difficulties. Therefore, the

Besides these possibilities there is a special configuratioRrobability that the variabley, will be in the intervally, with
when all 7; belong to intervals); with the same numbér ?;9&” has the factor exp{B¢é,n) and tends to zero as

— 00,

These considerations show that the model in the limit
B—, after the unfolding65), tends to the following very
simple model. Let us havl points. The probability distri-

In this case, in Eq(68), all terms cancel and one obtains  pution for thenth point is uniform in the interval,, and has
the shape shown in Fig. 1. All points are uncorrelated and the

7716J1,772€\]2,...,7]NEJN. (70)

P(71, ..., ) =1. (71  joint probability is the product of individual ones
N
But there are many other possibilities when at least gpe Pu(Yis - YN = ya). (75)
belongs to the interval,, andn#m. The probability of this N I nll PrlYn

event is proportional to ) ) ) _ )
To rewrite then-point correlation functions in the usual form

(3), note that for all possible configurations wf

r{ 1 <|§ | n-1 1 )2
expg — -
20250 2 2y Pu(YLs - - - oY) = (del n(Ym) Inm), (76)
n 1 (|§ |- m-1 _ i)z where ¢,(x) are functions obeyingﬁﬁ(x)=pn(x) which,
202\ 150 T2 2y evidently, forms an orthonormal system of functions
1 2 N/2
=exg — 52| 2[&[— [ mtn-2+—J(m-n)|. (72 ba(X) Dr(X)AX= S 77
o Y —N/2

By assumptionz,eJ,,, from which it follows that¢,  According to[4] all n-point correlation functions can be

el,, ie., written in the usual forn(3) with the kernel
N
Xmin<| &nl <Xmax» (73 Kn(X,y) = 21 Dn(X) Pn(y). (78
=
wherexmin=[m— 2+ (1/y) /2 andXya=[m— 3+ (1/y) )/2. The space structure of this kernel is presented in Fig. 2. Note

But in this interval the function in the exponent of Eq. that this kernel and all correlation functions do not depend
(72) is always positive. Indeed K,in=<X<Xpax then only on the difference of the coordinates and, consequently,
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p(t,t+s)

1/2

1/4
1/8

172t 1t 32t 2t 52+t s

FIG. 3. The local nearest-neighbor spacing distribution
p(t,t+s) for 0<t<1/2.

In our case, from Eq(79) it follows that

N t,
E(tl,t2>=nlj1 {1— ft pn(y)dy}- (80)

Note that it can be also rewritten as det(K; . ) where the
FIG. 2. The support of the kerngl8). The modulus of the 12

kernel equals 1 inside the indicated squares. Outside these squar%getratothl'tz is defined in the usual wa] (Ktlvtzf)(x)
the kernel is zero. =ftikN(x,y)f(y)dy. Lett;=t, t,=t+s and the integer part
of 2t equalsn
they are not translational invariant as in the classical cases
[4]. Special care must therefore be paid when defining stan- = E+ + and 0<T<E
dard quantities, such as spacing distribution, etc. 2 2°
Let us consider the nearest-neighbor spacing distribution
of eigenvalues. IE(t,,t,) is the probability that there is no Whenn=0, p(t,t+s) does not depend on and has the
eigenvalue in the intervalt(,t,), then the spacing distribu- following form (see Fig. 3

tion p(ty,t,), defined as the probability that there is one 0, 0<s<1/2—r
eigenvalue at,,t;+dt; and a second one &f,t,+dt, but p(t,t+s)=4 _,_ (81
none in between, can be computed4b 271, m2—r<s<(m+1)l2—7.
PE(t. t For n=—1 it has a similar form but instead of having the
=_ (—12) first jump at3— 7 it jumps ats=1—r. Forn<—2 it takes
p(ty,ts) . (79
dty0t; the form t=—|n|/2+ 7)
|
0, Oo<s<1/2—r7
21-m mi2—r<s<(m+1)[2—7 m=1,...|n|—-1 6
=+ =
PALITSI=N pooin |njj2— r<s<(|n|+1)/2—r 82
0, (In|+1)/12—r<s.

As now the nearest-neighbor spacing distributiand other statistical quantitiedepends on two variables, care is needed
to compare them with the standard definitions. The most natural definition of a smoothed nearest-neighbor spacing distribution
is just to compute it over all possible points of the spectrum by fixing only the distance between two levels

— Nl Y22+ rni2+ r+s)dr
p(s)= SV T (83
WhenN—o, p(t,t+s) for almost alln has the form depicted in Fig. 3. Therefore, s>
J— 1/2
p(s)=2 . p(r,7+s)dr. (84)

It gives
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_ 2s, 0<s<1/2
P)=1 5 nns2—s),  niz<s<(n+1)2 n=12, ... . ®9
|
In Fig. 4 we display this function to%ther with the next-to- fo(E+ ) fy(E—7)

nearest-neighbor spacing distributiomg(s), which give the ~ k(&,7)=C(B8)Q(BE,B7) : ,
probability that in the intervas, s+ds there are exactlk Vf2(28)5(2m)sinh(B(£— 7])/?6
eigenvalues.

An important property of this result is that the statistical yith
distribution of eigenvalues in the limB— «, after unfold-

ing, is the same for all three classes of symmetry: unitary, o B 1 2
orthogonal, and symplectic. In this respect it resembles the fa(x)= Zm exp — 5 n+ 5 X ]
distribution of energy levels of the three-dimensional Ander- "
son model near the metal-insulator transitjd®]. +oo 8 1 5
f.(x)= >, (—1)“ex;{—§ n+§—x) )
n=—ox
VIl. LARGE B LIMIT OF THE MODEL (30)

Up to now we have discussed the model with the loga- C(B)= ,ﬂ )

rithmic squared potential55). To relate it with the model 2f1(0)

(30) considered irf15] it is necessary to investigate the be-
havior of the kerne[31) when 8—co. For this purpose it is
convenient to transform thé functions in it by the usual

As B—x

C(B)—exp(BIA)12, f(x)—exd —B(n+1/2—x)%2],

formulas
f,(x)—(—1)"exq — B(n+ 1/2—x)?%/2],
o ix2 X o
61(x;p)=i(—i7) UZGXF{ _;.) 01<;;p ) where n=[|x|] is a value of an integen, for which the
expression i+ 1/2—x)2 has a minimal value
_ i\ [x A(x)=(12—{|x|})?°<1/4
0,x;:p)=(—i7) " Yexg — —|6,| —;p’ |, _ _
T T ([x] and{x} are integer and fractional parts .

Finally, one has

wherep=exp({7) andp’ =exp(—in/7). For the functions in B
Eq. (31) p=exp(-27°/B) andp’ =exp(-BI2). K(&, 77)—>exp( - E[na —|nll+ A+ +AE—7)
After this transformation the kern€B1) can be rewritten
in the form 1 1
—5A(26) - 54127 ||. (87)
2 2
1.0 L B A L B E As 0<A<1/4, the dominant contribution comes from the
] region
AL | “Ts T 88
- osr -1 i where O<8¢,67<1/2. (Note that it means thaft|2&|]=
= i [127[1)
a 04 k= 4 Simple calculation shows that in these squares
=3
1, if €>0
For all other values of and n K(&,7)=0.

00 4 o s T Therefore, wherB— « the exact kerne(31) of the model

(30) tends to approximate expressiti8) of the model(55).

An important point is that the latter was obtained only after

nontrivial unfolding of the spectruni62) contrary to the
FIG. 4. The smoothed nearest-neighbor spacing distribution anformer one for which the mean density of states is automati-

the smoothed next-to-nearest-neighbor distributiog(s). cally constant. But it is easy to check that for the mo@é)

S
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the measure itself has prominent oscillations of the same 2
type as oscillations in the density of sta{é®) for the model
(55), and both models are equivalent.

VIIl. NUMERICAL SIMULATIONS 15

To check the accuracy of the above predictions we have
performed the Monte Carlo simulations of the joint distribu-
tion of eigenvalueg?2) for the unitary ensembléwe have g

checked that for other ensembles one obtains the same re TR Y
sultg, taking as the potential the function
1 05 F £V ;

V(x)= 5=In?(1+x2), (90)
which reproduces the asymptotic behavior of the measure e
(30) and is nonsingular for small values »f S

Eigenvalues in the domaifx|<1 will feel a quartic po- 0 ! 2 3 4

tential V(x)=x%2B, those outside this region, i.e., when S

[x|=1, will be under the influence of a weak logarithmic
confining potential, as was discussed above. In the later do- £ 5 The nearest-neighbor spacing distribution for the case

main eigenvalues are spread frorRy to Ry, where, for  N=2 and forg=8 and 8=30. The histograms are Monte Carlo
largeN, simulations. Also shown the Poisson and the Wigner distributions,
for the sake of comparison.
N,B)

RN’;’Z GX4 7

which we have verified works well fokB3>5.

This exponential dependence Rf, with the productNg  In Fig. 5 it is shown that Monte Carlo simulations reproduce
implies a rapid spreading of the eigenvalues into the domaithe above expression quite well. In particular, we observe
|x|=1 even for relatively small values & and 5. that the Monte Carlo simulation is able to reproduce, in the

The usual saddle-point calculation, as in Es0), shows caseS=230, the extremely sharp peak near the origin. Al-
that in the limitN—o the mean number of levels between though the figure may suggest a linear dependende(sf
X, andx; tends to for small values ofs, careful analysis shows that, when

s—0, P(s)—k(B)s? and whers— = R(s)— exp(Ins/) for

K= fwf(t)dt, A=K‘1th(t)dt.

0 0

_ _ 1 B—e.
N(X2) =N(X1) = Elezlnlle —€Inxy|], (91) We come now to the case of lartje and Fig. 6 shows the
result of calculation of the meafover many realizations

where e = sign(x,). eigenvalue density as a function of the variable

The asymptotic independence of a smooth staircase func- 1
tion and density of states M is a typical manifestation of &= —Inx (93
the indeterminate character of this problem. Actually we B
have observed that fg8>1, N=20 is already close to the 3
asymptotic value.

We stress that this equation can be applied only when
X»,>X;. The local density of states will have oscillations and
will deviate from the standard or(®0) obtained just by dif- 2 [l
ferentiation of the above expression. s

In order to gain confidence in the Monte Carlo simulation &
it is instructive to start by considering the simple case h
N=2, where the level spacing is given by

25

P(s)=K 'Af(As), (92

05

where ‘RN HuuuuLHUMu
- -4 -2 0 2 4 6

£

f(t)ztzf exd —2V(u+t)—2V(u—t)]du,
0 FIG. 6. The density of states f@=40 andN=20. The Monte
Carlo simulations(the histogram compared with the function
and 04(2¢,p).
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08 | %

04

0 ! I MJ}"L-./\J_. 0":““|
2 3

4 5 0 1 2 3 4 5
s S

FIG. 9. The nearest-neighbor spacing distributionger80 and
FIG. 7. The nearest-neighbor spacing distributionder80 and  N=20 compared with the theoretical spacing distribution for the
N=20 before the unfolding with the exact mean level density. case of only positive eigenvalues.

in which, according to the standard arguments, the meafng all considerations, one concludes tipets) should have
eigenvalue density has to be equal to 1. We observe that the form

mean density of states has prominent oscillations and only its

smoothed value equals 1. The solid line in this figure is the S, 0<s<1
theoretical curvé62) and the agreement is quite good even HS)I 2-s, 1<s<2 (94)
for B=20. i

0, otherwise.

The existence of such oscillations modify all correlation

functions. In Fig. 7 we present the nearest-neighbor distribul- Fig. 9 Its f ical simulati for th i
tion for N=20 and 8=80 taking into account only the " "9 = FeSUls oM numerical simuiations for the nearest-

“first” unfolding (93). The appearance of a crystalline struc- neighbor spacing distribution are compar_ed to &d). This
ture is clearly seen. But it will disappear after the unfoldingresun means that th? asymptotic bghawor, wien 0, of
with the correct density of statd62). Figure 8 shows this q-Lagugrre polynomials is quite different from those of
phenomenon foN=40 and the same value @f. The solid g-Hermite ones.
line is our piecewise formuléd5). As above, the agreement
is very good. IX. CONCLUSIONS

We have also considered the model with the same poten-
tial as in EQ.(90), but with x; distributed not from— to
+o put from O to +o. It corresponds not to the
g-Hermite but to theg-Laguerre polynomial$21]. Repeat-

In conclusion we stress a few points. There are two types
of matrix ensembles invariant with respect to all rotations
corresponding to determinated and indeterminate moment
problems.

One can conjecturéut not prove in full generalitythat
17 for the first class of ensembles the asymptotics of orthogonal

polynomials are given by formulad7) and (24) and, con-
sequently, after unfolding, the eigenvalue distribution will
agree with the standard resultStrictly speaking, it was ar-
gued only for unitary ensembles. Most probably, it is also
true for orthogonal and symplectic ensembles but here one
has to consider the asymptotics of skew-orthogonal polyno-
mials which is a more complicated problem.

For the second type of ensembles corresponding to inde-
; s terminate moment problems, the general local asymptotics of
oz U f orthogonal polynomials cannot exist, as in this case the mean

R eigenvalues density tends, when the matrix dimension in-
A creases to gnonuniversal function which, in general, has a
= structure even on the scale of a mean distance between two
s eigenvalues. But the quantities smoothed over a larger inter-
val can be computed by the usual formulas.

FIG. 8. The nearest-neighbor spacing distributiondsr80 and Nevertheless, the eigenvalue distribution can be close to
N=20 after the unfolding with the exact mean level density com-the standard ones even for indeterminate problems as the
pared with the theoretical spacing distribution. Also shown, thedeviation of the exact and smoothed mean densities can be
Poisson distribution and the Wigner surmize, for the sake of comsmall, and only a small number of levels will feel the differ-
parison. ence.

08 3

06

04
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Models with a weak logarithmic potential, such as inunfolding the limiting distribution is the same for all three

Eqg. (55), are one of the best examples of large deviationssymmetry classes: unitary, orthogonal, and symplectic.

from the standard situation. In such cases the mean density

has large fluctuations and tends to a seriess dfinctions ACKNOWLEDGMENT
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