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Distribution of eigenvalues of certain matrix ensembles

E. Bogomolny, O. Bohigas, and M. P. Pato*
Division de Physique The´orique,† Institute de Physique Nucle´aire, 91406 Orsay Cedex, France

~Received 6 September 1996!

We investigate spectral properties of ensembles ofN3N random matricesM defined by their probability
distribution P(M )5exp@2 Tr V(M )# with a weekly confinement potentialV(M ) for which the moment
problemmn5*xnexp@2V(x)#dx is indeterminated. The characteristic property of these ensembles is that the
mean density of eigenvalues tends with increasing matrix dimension to be a continuous function contrary to the
usual strong confinement cases, where it grows indefinitely whenN→`. We demonstrate that the standard
asymptotic formulas for correlation functions are not applicable for weakly confinement ensembles and their
asymptotic distribution of eigenvalues can deviate from the classical ones. The model withV(x)5 ln2(uxu)/b is
considered in detail. It is shown that whenb→` the unfolded eigenvalue distribution tends to a limit which
is different from any standard random matrix ensembles, but which is the same for all three symmetry classes:
unitary, orthogonal, and symplectic.@S1063-651X~97!10206-9#

PACS number~s!: 05.45.1b, 05.40.1j
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I. INTRODUCTION

Random matrix ensembles are widely used for the
scription of statistical properties of energy levels of comp
quantum systems. Although initially they were supposed
be applied only to many-body systems with complicated
teractions, such as heavy nuclei~see, e.g.,@1#!, it was later
@2,3# conjectured that they could even be used for lo
dimensional quantum models, with the requirement that
classical motion of such systems should have strong cha
properties. The important feature of this conjecture cons
in supposing that, after a proper rescaling of the eigenval
the statistical properties of the spectrum of a generic cha
quantum system should be close to one of the three clas
random matrix ensembles: the unitary~GUE!, the orthogonal
~GOE!, or the symplectic~GSE! depending only on the sym
metry of the model@1–5#. ~For generic classically integrabl
models one expects that energy levels are independent
their spacing distribution is close to the Poisson distribut
@6#.!

The strong argument in favor of this conjecture is the f
that many different random matrix ensembles, at the scal
the mean level separation, give the same level spacing
tribution @4#.

Considering only the case of ensembles invariant un
all possible rotations of the eigenvectors~compatible with
the imposed symmetry!, the joint probability distribution
P(M ) of the matrix elements of aN3N matrixM is defined
@4# by choosing in

P~M !5C exp@2 Tr „V~M !…# ~1!

the functionV(x). Integrating Eq.~1! over the parameter
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related to the eigenvectors one can obtain the well-known@4#
joint probability distribution of the eigenvalues

P~x1 ,x2 , . . . ,xN!5CNexpF2(
i51

N

V~xi !G)
i, j

uxi2xj ug, ~2!

whereCN is a normalization constant andg is a symmetry
parameter equal to 1, 2, or 4 for GOE, GUE, and GS
respectively.

In the simplest case of the unitary ensemble (g52) all
n-point correlation functions can be written in terms of
single function@4#

Rn~x1 , . . . ,xn!5det„KN~xi ,xj !…i , j51,2, . . . ,n , ~3!

where

KN~x,y!5expF2
1

2
V~x!2

1

2
V~y!G (

n50

N21

Pn~x!Pn~y!, ~4!

andPn(x), n51,2, . . . , arepolynomials orthogonal with re-
spect to the measure exp„2V(x)…, i.e.,

E exp„2V~x!…Pn~x!Pm~x!dx5dmn . ~5!

The correlation functions for the orthogonal and the sy
plectic ensembles can be expressed in terms of the so-c
skew-orthogonal polynomials@4,7#.

By the Christoffel-Darboux formula@8# the kernel~4! can
be rewritten as

KN~x,y!5expF2
1

2
V~x!2

1

2
V~y!GaN21

aN

3FPN~x!PN21~y!2PN~y!PN21~x!

x2y G , ~6!

where an is the coefficient of the termxn in Pn(x)
@Pn(x)5anx

n1 •••#. Further progress in the explicit com
putation of then-point correlation function, in the natura
6707 © 1997 The American Physical Society
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6708 55E. BOGOMOLNY, O. BOHIGAS, AND M. P. PATO
limit N→`, depends on the knowledge of the asympto
behavior of the polynomialsPn(x), when n→`. In prin-
ciple,KN(x,y) and all the other correlation functions, in pa
ticular, the average level densityrN(x) of eigenvalues

rN~x![KN~x,x!5exp„2V~x!…
aN21

aN

3@PN8 ~x!PN21~x!2PN~x!PN218 ~x!# ~7!

depend on the potential and onN. The universal behavior is
only expected in the limitN→` and after unfolding@1–5#,
i.e., after rescaling the eigenvalues by choosing a new v
ablej5j(x) from the relation

dj

dx
5rN~x!. ~8!

In terms of these variables then-point correlation functions
are still given by Eq.~3!, but withKN(x,y) replaced by the
kernel

K̄N~j1 ,j2!5
KN@x~j1!,x~j2!#

ArN@x~j1!#rN@x~j2!#
. ~9!

It is evident that these newj variables will have, by con-
struction, an average level density equal to one, from wh
follows the name of this procedure—unfolding the spectru

The hypothesis of universal behavior of the matrix e
sembles assumes that in these unfolded variables and i
limit N→` the above kernel tends to the universal functi

K̄0~j1 ,j2!5
sin@p~j12j2!#

p~j12j2!
~10!

independent ofV(x). ~The corresponding limiting function
for GOE and GSE are given in@4,5#.!

II. ASYMPTOTICS OF ORTHOGONAL POLYNOMIALS

For many potentials this conjecture has been already v
fied ~see, e.g.,@4,9#!. In fact, there exists a simple WKB-typ
ansatz for the asymptotics of orthogonal polynomials of
‘‘arbitrary’’ V(x) @10# that, as is shown in Ref.@14#, leads to
the scaling limit~10!. However, it can be proven only fo
special classes of potentials.

The main ingredient of this asymptotics is the calculat
of the mean eigenvalue densityr̄ N(x) as the function which
gives an extremum of the total measure~2! of the ensemble
of N3N matrices. Consider Eq.~2! written as

P~x1 ,x2 , . . . ,xN!5C exp@2F~x1 ,x2 , . . . ,xN!#, ~11!

where

F~x1 ,x2 , . . . ,xN!5(
i51

N

V~xi !2
g

2(iÞ j
lnuxi2xj u. ~12!

AssumingrN(x) to be a smooth function ofx nonzero only
in the intervala,x,b, one has
c

ri-

h
.
-
the

ri-

n

F@rN~x!#5E
a

b

r̄ N~x!V~x!dx

2
g

2Ea
bE

a

b

r̄ N~x!lnux2x8u r̄ N~x8!dx dx8,

~13!

with the normalization condition

E
a

b

r̄ N~x!dx5N. ~14!

The extremal functionr̄ N(x) in Eq. ~13! is defined by con-
dition dF/dr50 that yields

V~x!5gE
a

b

r̄ N~ t !lnux2tudt1C, ~15!

or, by differentiation,

PE
a

b r̄ N~ t !

x2t
dt5

1

g
V8~x!, ~16!

where the symbol P denotes the Cauchy principal value.
general solution of this singular integral equation~often
called in this context the Dyson equation! is well known,
~see e.g.,@12,13#! and can be written in many differen
forms. For simplicity we assume thatV(x) is an even convex
function anda52R, b5R. In this case,

r̄ N~x!5
N

pAR22x2
1

1

gp2PE
2R

R dt

t2xS R
22t2

R22x2D
1/2

V8~ t !,

~17!

where the value ofR has to be determined from the equatio

1

gpE2R

R

dtSR1t

R2t D
1/2

V8~ t !5N. ~18!

Integrating overx one obtains the useful relation

E
0

x

r̄ N~x8!dx85
N

p
arcsinS xRD1

1

gp2E
2R

R

dt V8~ t !

3 lnUR22tx1A~R22t2!~R22x2!

t2x
U. ~19!

If, for example,V(x)5kguxua, where k is constant, then
@9,11#,

r̄ N~x!5
N

RN
f S x

RN
D , ~20!

with

f ~x!5
a

pEuxu

1 ta21

At22x2
dt ~21!

and

RN5SNAp

2k

G~a/2!

G~a11/2! D
1/a

. ~22!
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For the Gaussian potentialV(x)5gx2/2

r̄ N~x!5
1

p
A2N2x2, ~23!

which is the famous Wigner semicircle law@4#.
Knowing r̄ N(x) the asymptotics of theNth orthogonal

polynomial whenN→` can be written as follows~see, e.g.,
@10,11# and @14#!:

PN~x!°S 2p D 1/2exp„12 V~x!…

~RN
22x2!1/4

cos@FN~x!#, ~24!

where

FN~x!5pE
x

RN
rN~x8!dx81

1

2
arccosS x

RN
D2

p

4
. ~25!
n
e
n-
ch

u
’’

p
of
n
e

For certain purposes it is more convenient to have a slig
different asymptotics when theM th polynomial is expressed
in terms of quantities connected with theNth polynomial. If
M andN are large andM2N!M

PM~x!°S 2p D 1/2exp„12 V~x!…

~RN
22x2!1/4

3cosFFN~x!1~M2N!arccosS x

RN
D G . ~26!

A simple physical explanation of this ansatz can be found
@14#. Assuming its validity and taking into account th
aN21 /aN→RN/2 asN→`, it is easy to compute the kerne
~6! ~see@14#!
KN~x,y!5
cos@FN~x!#cos@FN~y!2f~y!#2cos@FN~y!#cos@FN~x!2f~x!#

p~x2y!Ausin@f~x!#sin@f~y!#u
, ~27!
as
nal

n

where f is defined from the relationx5RNcosf(x),
y5RNcosf(y). Now, assumingx/RN;1 andy/RN;1, but
their differenceux2yu!RN , one has

KN~x,y!.
sin@j~x!2j~y!#

p~x2y!
, ~28!

wheredj/dx5rN(x) has the meaning~up to the shift! of the
mean staircase function. After unfolding, one obtains

KN~j,h!.
sin~j2h!

p@x~j!2x~h!#Ar„x~j!…r„x~h!…
, ~29!

and x(j) as above is the inverse function ofj(x). If we
suppose that the mean density does not change much o
scaleDj;1, we can conclude that this expression coincid
with Eq. ~10!. ~These considerations are valid far from si
gular points ofr(x). For interesting phenomena near su
points see@18#.!

We emphasize that Eqs.~24!–~26! are only a resonable
conjecture for asymptotics of orthogonal polynomials b
they are not yet proved in a full generality for ‘‘arbitrary
potentialV(M ).

III. COUNTEREXAMPLE OF STANDARD ASYMPTOTICS

The discussion above leaves the impression that the
tential V(x) plays a secondary role and that in the limit
largeN, after unfolding, the statistical properties of any e
semble will follow universal functions. That this is not th
whole story has been shown in Ref.@15#. In this paper, it was
considered the case of a unitary ensemble,g52, with a po-
tential
the
s

t

o-

-

V~x!5 (
n50

`

ln@112qn11cosh~2x!1q2n12#, ~30!

where x5sinh(x) and the parameterq5exp(2b), with
b.0. The main reason to choose this particular form w
the fact that the asymptotics of the corresponding orthogo
polynomials, the so-calledq-Hermite polynomials, can be
calculated explicitly@16#. In Ref. @15# it was then obtained
that in the limitN→` the kernel~6! tends to

K̄~j,h!5C~b!V~bj,bh!Q4~j,h;p!
u1„p~j2h!;p…

sinh@b~j2h!/2#
,

Q4~j,h;p!5
u4„p~j1h!;p…

Au4~2pj;p!u4~2ph;p!
,

V~u,v !5
Acosh~u!cosh~v !

coshS u1v
2 D , C~b!5

b

2pu18~0;p!
,

~31!

whereu1(x,p) andu4(x,p) are Jacobi’su functions defined
as in ~@20#, p. 921! u i8(x,p)5]u i(x,p)/]x, and p
5exp(22p2/b).

Certainly, Eq.~31! is far from the standard expectatio
~10!. In particular, whenp,1, i.e.,b,2p2 and j'h this
kernel can be approximated by the simple expression

K̄b~j,h!5
b

2p

sin@p~j2h!#

sinh@b~j2h!/2#
, ~32!

from which it follows that it tends to the GUE limit~10! only
whenb→0. This approximate expression was used in@15#
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to compute the nearest-neighbor spacing distribution an
was concluded that with increasingb it tends to the Poisson
distribution typical of an uncorrelated sequence of eigenv
ues.

The purpose of this paper is twofold. First, we clarify wh
the ensemble of Ref.@15# gives a result different from the
standard one, Eq.~10!. We will also show that the potentia
~30! belongs to a large class of potentials for which the us
asymptotic estimates are, strictly speaking, incorrect. S
ond, we shall directly compute the level spacing distribut
of the eigenvalues in the limitb→` for this and similar
ensembles, showing that after unfolding they tend to a l
iting distribution independent ofb, which is neither the Pois
son nor the GUE distribution.

IV. DETERMINATE AND INDERTIMINATE AND
MOMENT PROBLEMS

Before proceeding, we need a few facts from the theory
orthogonal polynomials@17# which are well known but ap-
parently never used in the present context. Let us define
momentsmn of the distribution exp„2V(x)…

mn5E exp„2V~x!…xndx, n51,2, . . . ~33!

where for simplicity we have omitted the limits of integr
tion. Given the functionV(x) all the mn are uniquely de-
fined. The important question is to know if the inverse is a
true, i.e., if given all themn is it possible to find the unique
functionV(x)? If the answer to this question is positive w
say that the ‘‘moment problem’’ is determined, otherwise
call it indeterminate.

It is a well-known result that finite limits of integratio
always lead to a determined moment problem@assuming that
V(x) has no singularities#. For the infinite interval there ex
ists a simple condition that states that in order for the m
ment problem

mn5E
2`

`

exp„2V~x!…ndx, n51,2, . . . ~34!

to be determined, it is sufficient that

(
n51

`

m2n
2~1/2n!5`. ~35!

On the other hand, for the moment problem on the se
infinite interval

mn5E
0

`

exp„2V~x!…xndx, n51,2, . . . ~36!

to be determined, it is sufficient that

(
n51

`

mn
2~1/2n!5`. ~37!

If the moment problem is indeterminate then there is fu
tion f (x) orthogonal to allxn, such that
it

l-

l
c-
n

-

f

he

o

-

i-

-

E exp„2V~x!…f ~x!xndx50, for all n. ~38!

Roughly speaking one can say that slowly growing potent
lead to indeterminate problems. Thus, for example, the
tential V(x)5kuxua gives a determined moment proble
only whena>1 for the interval (2`,1`) and only when
a>1/2 for an interval (0,1`). That otherwise we have a
indeterminate problem follows from the two easily prov
identities:

E
2`

`

exp~2kuxua!cosS kuxuatan
pa

2 D xndx
50 for all n, if a,1, ~39!

and

E
0

`

exp~2kuxua!sin~kuxuatanpa!xndx50 for all n,

if a, 1
2 . ~40!

In the same way, the identity

E
0

`

expS 2
1

b
ln2xD sinS 2p

b
lnxD xndx50 for all n ~41!

shows that the moment problems of the poten
V(x)5(1/b)ln2x is always indeterminate.

The importance of the above-introduced notions of de
mined and indeterminate moment problems lies in the f
that these two types of models differ by the behavior of th
mean densityrN(x) of eigenvalues of corresponding rando
matrix ensemble in the limitN→` ~@17#, p. 50!. In fact, a
necessary and sufficient condition for the moment probl
to be determined is that asN→`

rN~x!→`. ~42!

If the moment problem is indeterminate, then

rN~x!,` ~43!

asN→` and the density tends to a continuous function
x.

It is evident that, for indeterminate problems, th
asymptotic behavior of the corresponding orthogonal po
nomials cannot be described by the previously discus
method, simply because formulas from@10,11# define the
level density and other quantities as unique function
V(x). But for indeterminate problems there are infinite
many different measures giving exactly the same orthogo
polynomials and there is no way to choose the ‘‘correc
one.

The difference between ensembles whose potentials
rise to a determined or indeterminate moment problem
be understood from their limits asN→`. After unfolding,
the universal behavior is expected in the scale ofj of order
1, but if rN→` asN→` the corresponding values of the o
variablesx tend to zero. Therefore, one is forced to consid
very small values ofx and the existence of universa
asymptotic formulas seems natural. On the contrary, for
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determinate problems even after unfolding, the correspo
ing values ofx are of order 1 and there is no reason why t
limit should be universal.

One can conjecture that the asymptotic formula of
behavior of the orthogonal polynomials given in@10,14# can
be applied only for determinate problems. Asymptotic pro
erties of indeterminate problems can be completely differ
from standard expectations.

The asymptotic behavior of the potential~30! is the fol-
lowing:

V~x!°
2

b
ln2x. ~44!

Therefore, the problem considered in Ref.@15# corresponds
to an indeterminate moment problem and the difference
tween Eq.~32! and the expected value Eq.~10! is not so
surprising.

V. BEHAVIOR OF SMOOTH QUANTITIES IN
INDETERMINATE MODELS

Nevertheless, the smooth quantities even for indeter
nate problems can be described by the usual formulas.
example, let us define the smooth mean level density by

r̄ ~x0!5
1

DxEx02~1/2!Dx

x01~1/2!Dx
r~x!dx. ~45!

If the intervalDx includes many eigenvalues butDx!RN it
is still possible in some cases to prove Eq.~16!, but the local
mean density of states will be different from this value. B
low we shall present the explicit calculation for a certa
model that clearly illustrates this point. In some sense, i
possible to say that for indeterminate problems there is
separation between macro and micro scales.

We stress that for determined problemsrN→`, when
N→` assuming that the potentialV(x) does not depend on
N. Sometimes one considers theN-dependent potential in
such a way that the mean density of states tends to
N-independent limit. By analogy with the Gaussian case
often defines the measure as exp„2NV(x)… ~see, e.g.,@14#!.
If it is not just rescaling of variables, it can drastically chan
the asymptotic behavior of all quantities, as it correspond
a particular limit when certain coupling constants tend
infinity with increasingN.

A rough description of indeterminate problems can be
tained using the above-mentioned asymptotic formu
though locally they cannot be applied. The main feature
indeterminate systems is that their mean density tends, w
N→`, to a certain function independent ofN.

Let us consider the example of the potential

V~x!52kuxua. ~46!

From Eq. ~39! it follows that it leads to an indeterminat
problem when 0,a,1. In fact, to find the behavior o
r̄ (x) at a fixedx, it is necessary to compute the function~21!
as x→0. Whena.1, f (0) is infinite, but if 0,a,1, we
d-

e

-
t

e-

i-
or

-

s
o

he
e

to

-
s,
f
en

find ~note thatp*0
xrN(y)dy equals the argument of the nu

function ~39! which is orthogonal to all powers ofx! that
whenN→`

r̄ ~x!°k
a

p
uxua21tanh

pa

2
. ~47!

Another important example is a potential of the form

V~x!5
1

b
ln2uxu, ~48!

that whenN→` gives

RN°2 expSNb

2 D ~49!

and

r̄ ~x!°
2

buxu
. ~50!

We stress that Eqs.~47! and~50! are approximating formulas
giving only the smooth part of the mean level density. T
exact mean level density has oscillations which are was
out by the above method~see below!.

Assume, for the moment, that the expression~29! is valid
for indeterminate systems andr(x) is the limiting mean den-
sity. In most cases one is interested in the investigation of
statistical properties of a large number of eigenvalues.
r(x) is an integrable function, in order to obtain many e
genvalues one is forced to consider large values of (x,y) and
(j,h). Now, the important region in the kernels is the fo
lowing:

x,y@1, Dj5j2h;1 ~51!

and

K~j,h!5
sin~Dj!

p„x~j!2x~j2Dj!…Ar„x~j!…r„x~j2Dj!…
.

~52!

If x(j)2x(j2Dj)2Djdx/dj50(Dj)!1 one can neglec
the higher-order terms, giving as result the limiting for
~10!. This condition is equivalent to

d2x

dj2
!
dx

dj
when j→`. ~53!

For example, for the model~46!, r(x);xa21, hence
x(j);j1/a and the above condition is fulfilled ifj!1. This
means that, for this model, it is possible to observe a not
able deviation from the standard result~10! only at small
values ofj. But as there is only a small fraction of eigenva
ues in this region, the asymptotics in the bulk of the spec
tends to the usual one.~There is an interesting limit when
a→0 asN→`, but we shall not consider it here.!

From the above condition we can infer that in order
have a nonstandard behavior it is necessary that the se
derivative ofx(j) is of the same order as the first one, whi
is true if, for example,

x;exp~bj!, ~54!
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or, in other words, ifr(x);1/bx. But this is exactly the
case, as we have already seen, of the square logarithmic
tential and, consequently, of the potential which has b
discussed in Ref.@15#. Indeed, if we substitute Eq.~54! into
Eq. ~29!, we obtain the approximate expression~32!.

These simple considerations clearly show why mod
with the potential growing as ln2(x) are different from the
other ones. It is for these models that the statistical prope
of eigenvalues deviate from the standard ones, not only n
special points, but in the bulk of the spectra.

VI. LARGE b LIMIT OF THE ln 2zxz/b MODEL
It is natural to ask whether Eq.~32! is valid for all values

of b. Note that it was obtained only whenb,2p2. In @15# it
was noticed that with increasingb the distribution of eigen-
values tends to the Poisson distribution, but the analysis
based on the approximate kernel~32!.

We shall show that for this type of model, whenb→`,
the kernel~6! tends~after unfolding! to a limiting function
which is different from any standard ensemble, but which
the same for all three symmetry types: unitary, orthogon
and symplectic.

We start considering the potential„for convenience we
have introduced the symmetry parameterg in the potential
@see Eq.~2!#…

V~x!5
g

b
ln2uxu, ~55!

for which the probability distribution~2! is

P~x1 ,x2 , . . . ,xN!5CNexpS 2
g

b (
i51

N

ln2uxi u D)
i. j

uxi2xj ug.

~56!

The expression of the smoothed level density suggests
convenience of introducing the new variablesj i connected to
the xi by

xi52 sinh~bj i !, ~57!

whose probability distribution can be written as follows:

P~j1 , . . . ,jN!5CN8expS 2
g

b (
i51

N

ln2u2 sinhbj i u D
3)

i. j
u2 sinhbj i22 sinhbj j ug

3)
i51

N

2 coshbj i , ~58!

where the last term comes from the productdx1 , . . . ,dxN .
When b→` with j i fixed, xi→` and in the difference
uxi2xj u the term with the largest modulusuj i u will dominate.
Let

uj1u,uj2u,•••,ujNu. ~59!

Then in the limit of largeb the probability distribution tends
to the simple function
o-
n

ls

es
ar

as

s
l,

he

P~j1 , . . . ,jN!

5CNexpF2gb (
n51

N

jn
21b (

n51

N

ujnu„~n21!g11…G ,
~60!

or

P~j1 , . . . ,jN!5 )
n51

N
1

2sA2p

3expF2
1

2s2 S ujnu2
n21

2
2

1

2g D 2G ,
~61!

wheres51/A2gb. As b→` eachujnu is distributed as the
Gaussian random variable centered at (n2111/g)/2 with a
half-width that goes to zero whenb→`. It means that con-
dition ~59! is fulfilled and the calculations become simple.
particular, the mean level density, equaled to the integ
over all variables but one, can be written as

r~j!5
1

2 (
n50

N21
1

sA2p
expF2

1

2s2 ~ uju2j~n!!2G , ~62!

wherej (n)5(n11/g)/2.
In the limit b→` this density tends to a sum ofd func-

tions

r~j!5
1

2 (
n50

N21

d~ uju2j~n!!. ~63!

Therefore, in this limit, the eigenvalues are located on a cr
tal lattice structure whose sites are separated by a distan
one half.

The difference between the exact mean density and
usual approximation obtained by the solution of the sad
point equation~16! is clearly seen. Equation~16! gives only
the smoothed part ofr(j), but is unable to reproduce th
prominent oscillations of Eqs.~62! and ~63!.

The next logical step is unfolding the spectrum with t
correct density of states given by Eq.~62!. Thus, we intro-
duce the new variableh

dh

dj
5r~j!, ~64!

where, asb→`, r(j) can be represented as the piecew
continuous function

r~j!5
1

2

1

sA2p
expF2

1

2s2S uju2
1

2S n211
1

g D D 2G ,
if ujuPI n ~65!

and the boundaries of the intervalsI n (n51,2, . . . ,N) are
chosen in between two peaks

1

2S n211
1

g D2
1

4
,I n,

1

2S n211
1

g D1
1

4
. ~66!
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~The first and the last intervals being slightly differen

0,I 1,
1
411/2g and 1

2@N2111/g#2 1
4,I N,`.! Choosing

h(0)50, one concludes that in the limitb→`, when uju
PI n , uhuPJn , where new intervalsJn are

n21

2
,Jn,

n

2
. ~67!

To find the probability distribution in the coordinatesh i , it
is necessary to multiply Eq.~61! by )1

Nr21(j i)

P~h1 , . . . ,hN!5P„j1~h1!, . . . ,jN~hN!…)
1

N

r21@j i~h i !#.

~68!

As h(j) is a monotonic function, the sequence of inequa
ties ~59! transform to

uh1u,uh2u,•••,uhNu. ~69!

Therefore, with this ordering of variables, the probabil
distribution is given by Eq.~68!. But the ordering~69! does
not give any information about the distribution of theh i
inside the intervalsJn . The only restriction are the abov
inequalities.

Besides these possibilities there is a special configura
when allh i belong to intervalsJi with the same numberi

h1PJ1 ,h2PJ2 , . . . ,hNPJN . ~70!

In this case, in Eq.~68!, all terms cancel and one obtains

P~h1 , . . . ,hN!51. ~71!

But there are many other possibilities when at least onehn
belongs to the intervalJm andnÞm. The probability of this
event is proportional to

expF2
1

2s2S ujnu2
n21

2
2

1

2g D 2
1

1

2s2S ujnu2
m21

2
2

1

2g D 2G
5expF2

1

2s2S 2ujnu2Sm1n221
2

g D ~m2n! D G . ~72!

By assumptionhnPJm , from which it follows that jn
PI m , i.e.,

xmin,ujnu,xmax, ~73!

wherexmin5@m2 3
21(1/g)#/2 andxmax5@m2 1

21(1/g)#/2.
But in this interval the function in the exponent of E

~72! is always positive. Indeed ifxmin<x<xmax then
-

n

5
fn,m~x!5

1

2S 2x2m2n122
2

g D ~m2n!,

fn,m~xmin!5
1

2
~m2n!~m2n21! if m.n

fn,m~xmax!5
1

2
~n2m!~n2m21! if m,n.

~74!

As m,n are integersm.n (m,n) implies thatm>n11
(m<n21) andfmn(x).0 for xPI m andnÞm. (m51 and
m5N do not give additional difficulties.! Therefore, the
probability that the variablehn will be in the intervalJm with
mÞn has the factor exp(2bfn,m) and tends to zero a
b→`.

These considerations show that the model in the li
b→`, after the unfolding~65!, tends to the following very
simple model. Let us haveN points. The probability distri-
bution for thenth point is uniform in the intervalJn and has
the shape shown in Fig. 1. All points are uncorrelated and
joint probability is the product of individual ones

PN~y1 , . . . ,yN!5 )
n51

N

pn~yn!. ~75!

To rewrite then-point correlation functions in the usual form
~3!, note that for all possible configurations ofyn

PN~y1 , . . . ,yN!5„det@fn~ym!#n,m…
2, ~76!

where fn(x) are functions obeyingfn
2(x)5pn(x) which,

evidently, forms an orthonormal system of functions

E
2N/2

N/2

fn~x!fm~x!dx5dnm . ~77!

According to @4# all n-point correlation functions can b
written in the usual form~3! with the kernel

kN~x,y!5 (
n51

N

fn~x!fn~y!. ~78!

The space structure of this kernel is presented in Fig. 2. N
that this kernel and all correlation functions do not depe
only on the difference of the coordinates and, consequen

FIG. 1. The individual probability distributionpn(x) for the
model ~75! in the limit b→`.
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they are not translational invariant as in the classical ca
@4#. Special care must therefore be paid when defining sta
dard quantities, such as spacing distribution, etc.

Let us consider the nearest-neighbor spacing distribut
of eigenvalues. IfE(t1 ,t2) is the probability that there is no
eigenvalue in the interval (t1 ,t2), then the spacing distribu-
tion p(t1 ,t2), defined as the probability that there is on
eigenvalue att1 ,t11dt1 and a second one att2 ,t21dt2 but
none in between, can be computed as@4#

p~ t1 ,t2!52
]2E~ t1 ,t2!

]t1]t2
. ~79!

FIG. 2. The support of the kernel~78!. The modulus of the
kernel equals 1 inside the indicated squares. Outside these squ
the kernel is zero.
es
n-

n

In our case, from Eq.~79! it follows that

E~ t1 ,t2!5 )
n51

N F12E
t1

t2
pn~y!dyG . ~80!

Note that it can be also rewritten as det(12Kt1 ,t2
) where the

operatorKt1 ,t2
is defined in the usual way@4# (Kt1 ,t2

f )(x)

5* t1
t2kN(x,y) f (y)dy. Let t15t, t25t1s and the integer par

of 2t equalsn

t5
n

2
1t and 0,t,

1

2
.

When n>0, p(t,t1s) does not depend onn and has the
following form ~see Fig. 3!:

p~ t,t1s!5H 0, 0,s,1/22t

212m, m/22t,s,~m11!/22t.
~81!

For n521 it has a similar form but instead of having th
first jump at 122t it jumps ats512t. For n<22 it takes
the form (t52unu/21t)

res

FIG. 3. The local nearest-neighbor spacing distributi
p(t,t1s) for 0,t,1/2.
ed
stribution
p~ t,t1s!55
0, 0,s,1/22t

212m, m/22t,s,~m11!/22t m51, . . . ,unu21

222unu, unu/22t,s,~ unu11!/22t

0, ~ unu11!/22t,s.

~82!

As now the nearest-neighbor spacing distribution~and other statistical quantities! depends on two variables, care is need
to compare them with the standard definitions. The most natural definition of a smoothed nearest-neighbor spacing di
is just to compute it over all possible points of the spectrum by fixing only the distance between two levels

p̄~s!5
(n52N/2
N/221 *0

1/2p~n/21t,n/21t1s!dt

(n52N/2
N/221 *0

1/2dt
. ~83!

WhenN→`, p(t,t1s) for almost alln has the form depicted in Fig. 3. Therefore, asN→`

p̄~s!52E
0

1/2

p~t,t1s!dt. ~84!

It gives
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p̄~s!5H 2s, 0,s,1/2

22n~n122s!, n/2,s,~n11!/2 n51,2, . . . .
~85!
e

ter

ati-
In Fig. 4 we display this function together with the next-to-
nearest-neighbor spacing distributionsp̄ k(s), which give the
probability that in the intervals, s1ds there are exactlyk
eigenvalues.

An important property of this result is that the statistica
distribution of eigenvalues in the limitb→`, after unfold-
ing, is the same for all three classes of symmetry: unitary
orthogonal, and symplectic. In this respect it resembles th
distribution of energy levels of the three-dimensional Ander
son model near the metal-insulator transition@19#.

VII. LARGE b LIMIT OF THE MODEL „30…

Up to now we have discussed the model with the loga
rithmic squared potential~55!. To relate it with the model
~30! considered in@15# it is necessary to investigate the be-
havior of the kernel~31! whenb→`. For this purpose it is
convenient to transform theu functions in it by the usual
formulas

u1~x;p!5 i ~2 i t!21/2expS 2
ix2

pt D u1S xt ;p8D ,

u4~x;p!5~2 i t!21/2expS 2
ix2

pt D u2S xt ;p8D ,
wherep5exp(ipt) andp85exp(2ip/t). For the functions in
Eq. ~31! p5exp(22p2/b) andp85exp(2b/2).

After this transformation the kernel~31! can be rewritten
in the form

FIG. 4. The smoothed nearest-neighbor spacing distribution an
the smoothed next-to-nearest-neighbor distributionspk(s).
l

,
e
-

-

k~j,h!5C~b!V~bj,bh!
f 2~j1h! f 1~j2h!

Af 2~2j! f 2~2h!sinh„b~j2h!/2…
,

~86!

with

f 2~x!5 (
n52`

1`

expS 2
b

2S n1
1

2
2xD 2D ,

f 1~x!5 (
n52`

1`

~21!nexpS 2
b

2S n1
1

2
2xD 2D ,

C~b!5
b

2 f 18~0!
.

As b→`

C~b!→exp~b/4!/2, f 2~x!→exp@2b~ n̄11/22x!2/2#,

f 1~x!→~21! n̄exp@2b~ n̄11/22x!2/2#,

where n̄5@ uxu# is a value of an integern, for which the
expression (n11/22x)2 has a minimal value

D~x!5~1/22$uxu%!2<1/4

(@x# and$x% are integer and fractional parts ofx).
Finally, one has

K~j,h!→expS 2
b

2F zuju2uh zz1D~j1h!1D~j2h!

2
1

2
D~2j!2

1

2
D~2h!G D . ~87!

As 0<D<1/4, the dominant contribution comes from th
region

uju5
m

2
1dj, uhu5

m

2
1dh, ~88!

where 0<dj,dh<1/2. ~Note that it means that@ u2ju#5
@ u2hu#.!

Simple calculation shows that in these squares

K~j,h!5H 1, if jh.0

~21! [2j] , if jh,0.
~89!

For all other values ofj andh K(j,h)50.
Therefore, whenb→` the exact kernel~31! of the model

~30! tends to approximate expression~78! of the model~55!.
An important point is that the latter was obtained only af
nontrivial unfolding of the spectrum~62! contrary to the
former one for which the mean density of states is autom
cally constant. But it is easy to check that for the model~30!
d
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the measure itself has prominent oscillations of the sa
type as oscillations in the density of states~62! for the model
~55!, and both models are equivalent.

VIII. NUMERICAL SIMULATIONS

To check the accuracy of the above predictions we h
performed the Monte Carlo simulations of the joint distrib
tion of eigenvalues~2! for the unitary ensemble~we have
checked that for other ensembles one obtains the sam
sults!, taking as the potential the function

V~x!5
1

2b
ln2~11x2!, ~90!

which reproduces the asymptotic behavior of the meas
~30! and is nonsingular for small values ofx.

Eigenvalues in the domainuxu<1 will feel a quartic po-
tential V(x)5x4/2b, those outside this region, i.e., whe
uxu>1, will be under the influence of a weak logarithm
confining potential, as was discussed above. In the later
main eigenvalues are spread from2RN to RN , where, for
largeN,

RN.2 expSNb

2 D ,
which we have verified works well forNb.5.

This exponential dependence ofRN with the productNb
implies a rapid spreading of the eigenvalues into the dom
uxu>1 even for relatively small values ofN andb.

The usual saddle-point calculation, as in Eq.~50!, shows
that in the limitN→` the mean number of levels betwee
x2 andx1 tends to

N̄~x2!2N̄~x1!5
1

b
ze2lnux2u2e1lnux1uz, ~91!

wheree i5 sign(xi).
The asymptotic independence of a smooth staircase f

tion and density of states ofN is a typical manifestation o
the indeterminate character of this problem. Actually
have observed that forb.1, N520 is already close to the
asymptotic value.

We stress that this equation can be applied only w
x2@x1. The local density of states will have oscillations a
will deviate from the standard one~50! obtained just by dif-
ferentiation of the above expression.

In order to gain confidence in the Monte Carlo simulati
it is instructive to start by considering the simple ca
N52, where the level spacing is given by

P~s!5K21Af~As!, ~92!

where

f ~ t !5t2E
0

`

exp@22V~u1t !22V~u2t !#du,

and
e

e

re-

re

o-

in

c-

n

K5E
0

`

f ~ t !dt, A5K21E
0

`

t f ~ t !dt.

In Fig. 5 it is shown that Monte Carlo simulations reprodu
the above expression quite well. In particular, we obse
that the Monte Carlo simulation is able to reproduce, in
caseb530, the extremely sharp peak near the origin. A
though the figure may suggest a linear dependence ofP(s)
for small values ofs, careful analysis shows that, whe
s→0, P(s)→k(b)s2, and whens→` R(s)→exp(lns/b) for
b→`.

We come now to the case of largeN, and Fig. 6 shows the
result of calculation of the mean~over many realizations!
eigenvalue density as a function of the variable

j5
1

b
lnx ~93!

FIG. 5. The nearest-neighbor spacing distribution for the c
N52 and forb58 andb530. The histograms are Monte Carl
simulations. Also shown the Poisson and the Wigner distributio
for the sake of comparison.

FIG. 6. The density of states forb540 andN520. The Monte
Carlo simulations~the histogram! compared with the function
u4(2j,p).
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in which, according to the standard arguments, the mea
eigenvalue density has to be equal to 1. We observe that t
mean density of states has prominent oscillations and only i
smoothed value equals 1. The solid line in this figure is th
theoretical curve~62! and the agreement is quite good even
for b520.

The existence of such oscillations modify all correlation
functions. In Fig. 7 we present the nearest-neighbor distribu
tion for N520 and b580 taking into account only the
‘‘first’’ unfolding ~93!. The appearance of a crystalline struc-
ture is clearly seen. But it will disappear after the unfolding
with the correct density of states~62!. Figure 8 shows this
phenomenon forN540 and the same value ofb. The solid
line is our piecewise formula~85!. As above, the agreement
is very good.

We have also considered the model with the same pote
tial as in Eq.~90!, but with xi distributed not from2` to
1` but from 0 to 1`. It corresponds not to the
q-Hermite but to theq-Laguerre polynomials@21#. Repeat-

FIG. 7. The nearest-neighbor spacing distribution forb580 and
N520 before the unfolding with the exact mean level density.

FIG. 8. The nearest-neighbor spacing distribution forb580 and
N520 after the unfolding with the exact mean level density com
pared with the theoretical spacing distribution. Also shown, the
Poisson distribution and the Wigner surmize, for the sake of com
parison.
n
he
ts
e

-

n-

ing all considerations, one concludes thatp̄(s) should have
the form

p̄~s!5H s, 0,s,1

22s, 1,s,2

0, otherwise.

~94!

In Fig. 9 results from numerical simulations for the neares
neighbor spacing distribution are compared to Eq.~94!. This
result means that the asymptotic behavior, whenq→0, of
q-Laguerre polynomials is quite different from those of
q-Hermite ones.

IX. CONCLUSIONS

In conclusion we stress a few points. There are two type
of matrix ensembles invariant with respect to all rotation
corresponding to determinated and indeterminate mome
problems.

One can conjecture~but not prove in full generality! that
for the first class of ensembles the asymptotics of orthogon
polynomials are given by formulas~17! and ~24! and, con-
sequently, after unfolding, the eigenvalue distribution wil
agree with the standard results.~Strictly speaking, it was ar-
gued only for unitary ensembles. Most probably, it is als
true for orthogonal and symplectic ensembles but here o
has to consider the asymptotics of skew-orthogonal polyn
mials which is a more complicated problem.!

For the second type of ensembles corresponding to ind
terminate moment problems, the general local asymptotics
orthogonal polynomials cannot exist, as in this case the me
eigenvalues density tends, when the matrix dimension i
creases to a~nonuniversal! function which, in general, has a
structure even on the scale of a mean distance between t
eigenvalues. But the quantities smoothed over a larger inte
val can be computed by the usual formulas.

Nevertheless, the eigenvalue distribution can be close
the standard ones even for indeterminate problems as t
deviation of the exact and smoothed mean densities can
small, and only a small number of levels will feel the differ-
ence.

-

-

FIG. 9. The nearest-neighbor spacing distribution forb580 and
N520 compared with the theoretical spacing distribution for th
case of only positive eigenvalues.
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Models with a weak logarithmic potential, such as
Eq. ~55!, are one of the best examples of large deviatio
from the standard situation. In such cases the mean de
has large fluctuations and tends to a series ofd functions
when the strength of the potential decreases. All limiti
correlation functions can be computed analytically and a
et

J

d

l

s
ity

r

unfolding the limiting distribution is the same for all thre
symmetry classes: unitary, orthogonal, and symplectic.
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